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ABSTRACT OF THE DISSERTATION

Flutter Control

with Unsteady Aerodynamic Models

by

Shyang Chang

Doctor Of Philosophy in Engineering

University of Californiap Los Angeles@ 1984

Professor A.V. Balakrishnan, Chairman

This dissertation deals with a generic problem for

"' aircrafts control laws for flutter suppression. Until

recently, the system frequency response was approximated

by rational functions so that the finite-dimensional L-

Q-R theory could be applied. However, discrepancy

between theory and practice, especially in transient

response, has led to renewed interest in the problem.

It would appear that the L-Q-R theory would need

infinite dimensional state space models. In this

research, we first develop a time-domain model for

unsteady aerodynamic loads and then couple it with a

lumped model for the structural dynamics. We show that

. the solution to the resulting input-output system.

characterized by integro-differential equations, can be
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endowed with a state space which is a reflexive Banach

space, and the state equations have a unique semigroup

solution. We go on to examine the input-output stability

for such a system. We show that input-output stability

need not imply stability of the states. By a suitable

approximation of the Sears function near the origin, we

show that the infinite dimensional (L2 ) L-Q-R theory can

be applied. We derive optimal feedback control laws

ensuring "weak" stability of the states, as well as

input-output stability.

4

p,'.

-p* * * -.- * * ...- ';.* ,- * - .- a .-

w"x*.*, ~.~ .>~ .**



CHAPTER 1

INTRODUCTION

This dissertation is in the general area of modell-

ing and control of aircraft flutter problem. Unsteady

aerodynamics is also studied because of independent

interest.

NATURE OF THE FLUTTER PROBLEM.1.

Aerodynamic flutter refers to a subject that has

developed from the earliest days of manned flight.

Flutter is an unstable motion due to the interaction

between structural vibrations and the aerodynamic forces

which results in the extraction of energy from the air.

It occupies a prime role in current design in the whole

spectrum of advanced aircraft, missiles and spacecraft.

The field is also one of great inherent interest as a

scientific and technical discipline.

The techniques required involve the study of un-

steady aerodynamics for arbitrary motions, structural

dynamics due to unsteady loading, and aerodynamic loading

caused by control surface motion. The primary design

goal is structural stability. Hence, this dissertation

will focus on the modelling of unsteady aerodynamics,

coupled aerostructural motion and flutter control systems.

.e'
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PREVIOUS WORKS

'".* Traditional methods of flutter analysis have pro-

ceeded in three steps, first determining the vibration

modes of the structure without aerodynamic forces pre-

sent; then calculating the aerodynamic forces on the wing

due to simple harmonic oscillations of the normal modes

as functions of Mach number, altitude, and reduced fre-

quency; and finally calculating the flutter boundary.

J.W. Edwards [1) and Edwards ot al. [2] have ex-

tended the unsteady aerodynamic theory from simple

.5 harmonic oscillations to arbitrary motions using Laplace

transform techniques. H. Ashley et al. (3) and E.H.

Dowell et al. [4] present similar formulations involving

inverse Fourier transforms to obtain impulse response

function airloads. These formulations are mathematically

correct, but the calculations are cumbersome and involve

functions available only in tabulated form. Hence few

examples of the exact transient response of airfoils ex-

cited by control surface motion have been calculated.

The first system theoretic formulation of the

problem is due to Balakrishnan [18]. Following his works

Burns et al [6] have also introduced an infinite-dim-

entional state space, although their approach is based on

retarded functional differential equations.

2
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OBJECTIVES AND CONTRIBUTIONS OF THIS STUDY

• . In order to provide a basis for the analysis of

aeroelastic control schemes, we develop the exact tran-

sient response of a three degree-of-freedom airfoil. The

development makes extensive use of special time-domain

functions derived from a function studied by Kussner

(Sears, [5]).

Currently the active control of flutter in flexible

flight vehicles has gone beyond the frequency domain

analysis in an effort to apply linear quadratic regulator

theory to the problem. However most of the works are

confined to finite dimensional theory via rational or

Pade approximations.

The major problems with those approaches are that

(1) the control obtained via finite dimensional approx-

imation is not put back into the original systems

(2) the singularity near the origin will not be seen

after rational approximation.

*. It is apparent that the problem could not be solved

-l without the conscientious introduction of infinite dimen-

sional state space. So the first step is to develop a

0. state space model for motion of an airfoil in two-dimen-

sional unsteady flow, of an inviscide incompressible

fluid. Then we show that the solution exists, is unique

and depends continuously on the initial data. Of part-

'." 3
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icular importance in the context of the present work is

the fact that we examine input-output statility and

L-Q-R theory for such system and thus may provide appro-

prite design tools for flutter suppression problems.

OUTLINE OF DISSERTATION

The mathematical model of unsteady aerodynamics is

presented in Chapter 2. The interaction of aerodynamics

with structure motion is given in Chapter 3. The com-

plete equations of motion are obtained as a set of

coupled* integro-differential equation. In Chapter 4 a

state space model is derived from the integro-different-

ial equation and the well-posedness of the model is pro-

ved. Chapter 5 is devoted to input-output stability and

-" L-Q-R theory. The final chapter presents the conclusion

of this research and suggestions for future research.

0
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CHAPTER 2

MATHEMATICAL MODEL OF UNSTEADY AERODYNAMICS

UNSTEADY AERODYNAMICS

The fundamental equations of unsteady aerodynamics

follow from the equation of state and conservations of

mass, momentum and energy. The derivation is presented

in numerous books. We follow the notation, nomenclature

and development of Bisplinghoff. et al. [3].

The exact equation satified by the velocity poten-

tial is
2 2 ]

q~a q * • 22

/"And the relationship between and a is given by the un-

steady Bernoulli's equation

- a2  a2  U2  a2
- .+ (2.3)

Y- 1 2 at 2

The boundary conditions associated with this pair of

4 partial differential equations are

aF +q VP (2.4)
Dt ait +

and Kutta condition for trailing edges of wings.

-.,F. .. '.. ... ... ..... . .. "" " " " " " " " " ' " " " " . ..- " .. . " " ' " "



The general nonlinear equations of potential flow

are difficult to solve. In order to be able to obtain

solutions to these equations, it is necessary to use

small perturbation theory.

Linearization is obtained by assuming that the body

is thin, so that the velocity vector varies only slightly

from the free-stream velocity. A disturbance velocity

potential * is defined such that

" Ux + 0

Then the linearlized partial differential equations for

unsteady, compressible flow are ( we henceforward drop

the A on$, a)

2 - +2,t = 0 (2.5)
22 axa U aa.. at ax

a + U (2.6).. :::2a a)t a x

* subject to linearized boundary conditions.

TWO-DIMENSIONAL INCOMPRESSIBLE UNSTEADY AERODYNAMICS

*e As a first step, we confine ourselves to incompress-

ible. inviscid flow only. We will derive a time-domain

model from the basic aerodynamic equations and appropri-

ate boundary conditions (see Balakrishnan [?]).

:':..6
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Consider a typical section as shown in Fig. 2.1,

extending along the X-axis from -1 to +1,p with motion

entirely in the X-Z plane. Then the disturbance velocity

potential *(t,xtz) is given by the Laplace equations

2 2 0
ax az

with the boundary conditionss

Wa(t~x) lxi < 9 t ~70 (2.8)

_8 (tx,0) U u a)(t.x.0) =0 1sxsl'Ut Pt > 0 (2.9)
at ax

a*(.10)+ U ~tl0 0 t > 0 * (2.10)
at ax

The boundary conditions (2.8). (2.9) and (2.10) are

the flow-tangency condition. Zero-pressure-discontinuity

*and Kutta conditions, respectively.

0 Following Schwarz see Bisplinghoff, et al.[).

it is easy to check that the 0(texts) below satisfies

equation (2.7).

y~~bg[S7.J - - - tan-' z..... ds
p. 2w LJ-a3~



where ya (t.x) is the circulation on the roil, and

Yw (tex) the circulation in the wake. They are to be

determined from the given boundary conditions. The

integrals are to be taken in the Cauchy sense.

The nest step is to represent * in terms of the
downwash function Wa (tx) through the given boundary

conditions.

4d'+ ;x =1 (t~x) ,. l . x E

~Moreovers

','."' (t#xO = ( tex) -1 < x <
ax 2

= YW It,x) i < x < l+Ut (2.13)

F(txO ) = 0 x < -1, x > l+Ut (2.1 ).

and that

.

-' - °
",%° - °- .... < ,'.°.~ ~ ... o,~ . - - ~* *. ~ ,. --



- ~ (text.) = (t (2.15
ax ~ax xO)

Hence

*(tox@O+) x 2JY (ttE)dE 0 -1 < x < 1

2 a

Y ~ '~a (tpE~dE + 3  Y w (tqE)dc 0

1 < x <1+Ut (2.16)

-. . Define

r t) ~Ya (ttC)dC (2.17)

It is clear from (2.11) that

-, (txo ) * - ~(t~O)

-4x 
-zp( o g 2 )aa

Hence the zero-pressure-discontinuity boundary condition

* yields



S r't S+ X Y (t.O)dC + U If(tex)l 0
4. (2 at w

-4-

1* x <1+ Ut

Uyw (tl') * r(t) 0 (2.18)

and Kutta condition yields

U Ya 1t (t-1) + r (t) 0

Therefore.

- t)
"-.. Y (t,14 ) and is finite.

"-° U

From (2.18). rw (tox) must satisfy$

*Y lt.x) 1 2.19)

Putting x ,

r'~ ( t)

and F(t):- t * t 0. (2.20)
U

* Therefore.

'" tex) 1 re t + )- (2.21)

,I

4 10



Substitute (2.21) into (2.12)t we got

Wa (t.x) = 1 X a do

[f..o
I. +U 3 (t+!;-) d

" _I. (t.a)
or do =-Wa (t.x)

1. 2w rtx "W

" 

CY

'" 11(x+ U do

-, =-W a (t.x)

+oj - ~t r'(t-y)
O 0 x-1-Uy

-1< x < 1 . (2.22)

*' Since ya (t.) 13 finite. Sohngen [8] proves that this

- integral equation has a unique solution.

I ". 11

t, .i



+tx 2t r' _(t .y )y

21r ;-l-lv-
2 71-- 1 J = -

WaV; d t

ir r,,, x x

f t ret x-

dy (2.23)

This is our basic integral equation.

Let H (aox ) fi i.G * dy (2.24&)

and H (a) 2 H (a,x )dx (2.25)

Li 12

Oo,, ii



Then the equation becomes ( Balakrishnan and Edward, [6])

t -x 1 f T Wa(ty):::::: Y (t,x) = l,{]1 -

--. f H(n.x) r" (t-n)drn (2.26)

where

r(t) y-2 (t.y)dy -H(nl (t-n)dn

... (2.27)

Substituting (2.26)p (2.21) into (2.11) we obtain the

solution for the disturbance velocity potential.

CIRCULATION ON THE AIRFOIL

With reference to fig. 2.1, let h(t) denote the

plunge coordinate, a(t) the angle of attack, and 0(t) the

* flap deflection. Then the downwash function Wa (t.x) is

given by

at Wa (tx) (t) +U za (t.x) (2.28)

where

13



. . . . . . . . . . . . -. . . . - . - - -

Z. (t,x) = -h(t) - (x-a)a(t). - x -cC

= -h(t) - (x-a)a(t) -(x-c)P(t)o

c cx 1* (2.29)

Then

Wa (tx) =-h'(t) -(x-a)al(t) -Uq(t)p

-1 x c

= -'(t -(x-a)a*(t) -(x-c)pt(t) -Uar(t)

C~ x~ 1 (2.30)

Hence

11

0~0



1 ~ HT~r~to~do(2.31)

Substitute (2.30) into (2.31)- we get

F(t) =2TrUa&(t) + (2oos 1 02 )Up(t) + 2wh'tM

+ ( 2i + (1-2c )cosc - o* c)p(t)

1-(ir -2wa )c(t) + 2+14~)' tod

e.@(2.32)

Let

x(t)= [c(t) z(t)= L c)

and i I)

then

r (t) [B .z(t) J f2l+1~'(tad

ea(2.33)

where



0

2wU

w- 2na -
(1- 2c )cOa c +(2 c h41 ce

-~ But

r(0) = B.z(0)J

Hence

0 [B, Z(t)-z(0)]- iti+ 'r (t-ai)dc (2.34)

For

2 do i+Z~L

el e L. U1 I=,+ ,1dz (2.35)

Let

Then

16



-0(S) = J -'t tdL

Hence

-sZ U~(.6
eU 1  d = K*l d2 K ) (236

and

-8

U[BL(Zis)-. 6i2 e

where

L (Zis) 0 t z(t) dt (2.37)

We will define cl(t) as the inverse Laplace transform of

0U.

* Then

.t0
r'(t =J cl (-)LBe Z(o)3d (2.38)

17
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and

r~t M cl(t-u)(B.Z(O)]do, c2(t)[BpZ(0)j

+ [B,,Z(O)3 (2.39)

where

c2(t) = 0 c1(s) ds

Finally we note the series expanis ion due to Kuissner

(Sears. 5 for cl(t)

Ut 5

c1(t) u 2~ (Ut)-2 -(t)

Tr ~~ 2 5-(Ut)

161(U)

Ut 5

* ~~U ( ,... 41,oa(MU-2)Cl(t) = (1I-+
(Ut-i)2  ut 1U-) U-

-54Loa(MU-2) + (4j3r2

* Ut-i)2  (Ut-i)2

(Ut - 1 )2(2.41)

S'S 18



CALCULATION OF THE LIFT. PITCHING MOMENT AND FLAP MOMENT

In this section, we will write down the lift, pitch-

ing moment and flap moment expressions. The detailed

derivations are in Appendices A. B. C.

-~p=(){ ur(t)+ Ua'(t) -U (c 4 I _ - Cos c

. (t)+ w h"(t) - ai (t) - ,€ )3

+ c cosl-c - tc2 ) -

-. .-
d 

1

3- tC [O()d (2.142)

where

c3 (M) = 0 cl(t-.) [U, - 4  ,2U*]de (2.43)

.* M = (-P) U2(-1-2a)na (t) + U2 r(-l-2) Cos-lc

+ (c-2a)J-c 2 J](t) - U (l+2a)n'h'(t)

+Wt(a2-a-I) t)+ u [ (-j+3ac-2a-2a..'.'

*.'Jc2+(2ac+c..2a-a2) cos-1 ] 0'(t)-

"1'2, 
1 a - & 2

(+a2+a) ' h"(t) (1 a 3

19
0'_ .



- 2 002

2 3~~2'

+ua (1-c2 (t-)) [B. Z(o) do + ~ a

-c c(t- a) +ac 3 (t-) c o5 (t-a-)] [BZ(T)] do

0..(2.44&)

where

04(t) =0 2(t) + 03(t)

c5(t = 3 c1(t-0) (14.ua) u 2 +ua (1+tUo)1

o..(2.45)

3. (-p) ju f2C)T 2 
-(2c.,l)oo1c] (~t)

U2f1 (C)P(t) +~ u (+~r- - (2c+l)oosl

hl'(t) + U [ c.) -(1i3o)oos-lo

-h1 (c)] o(t) + u(~- (f2(c)-Cf1 (o))J '()

20



-h 1.(c)h"(t) +(ahl(c)-h 2 (c)) a"(t) + (9 2 (c)-

WI I
-cg 1 (C)() M H(,n)ro(t-'n)d- +

d~f H,20~ r(t-n)d-n (2.146)

where

[(2c+1)(Cos lc)2 -c2) 2 -1o

() 1 [(l~O)cos 1l 2c-2 ) 4l-t)3]

2 0 +. (c1

9Cos4)] i- cc)(2cc)

S - ~1 2 -1r. g2(c)- (Cos c ,j1-cJ)(- 1)[(1-2c+2o )Cos c-

~(2c +9c+4) [c,-)cs ~c~

21



42
+(2+2' _5c12 2

h1 ()= 1-2c-2c 2  -1 1, 2niJIh~~ )Cos (2 9 4)1C

2~' 2 &eVco c (T2---21 -

122

I.C.

Fig. 2 *1

22



CHAPTER 3

COUPLED AERO-STRUCTURAL DYNAMICS

In aeroelasticity the aircraft structures under con-

sideration are perfectly elastic. That is, the model

describing the structure requires partial differential

equations. As a first step, we will only treat a three-

degree-freedom two-dimensional typical sections which may

be regarded as representing the first bending and torsion

modesof a three-dimensional flexible wing.

EQUATIONS OF MOTION OF A TYPICAL SECTION

The equations of motion ( following the usual con-

ventions, see Theodorsen [9)g and Edwards (1]) can be

written,

M +Bx +KX = + Gus a s m (3.1)

where the subscript s stands for structure, and

-a+ ( - )

Ks = 2 0 0

2

0 N12. 2
Wo 0

23* -



00

L -P,

p=P+
0 no

M M +M

PoeC p one

where the subscript o stands for "circulatory" and nio

for "non-circulatory". For non-circulatory part,

Pn

* [ame] Max +Bax+KaX

L p ncJ

where the subscript "a" stands for aerodynamics
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Ka U V

o 2(--a r2 [(-1-2a)cos-c

0+(c..2a) IIJ]

p~~ 

-(1+2c)cos-c]-uc 
17

B a U- 2

-irU(1.t2a) RU (a2-a-~ f-i3c

-2a

..2a-2ac-c)

2~c U[[(8 g 2.
U[(24c)i uf +4C* U)-

-(14c~osco -jf7c2(14. (f2(c)-c
30cCos 1 C *f 1 (C))J

-h1(c)]
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where

C

i10

M.tt e?(10 cl(t(-gtH2l))dg

" ".Moreover, we can write (3.2) in a more compact forms

M 4.

M + [uB.Z(O)]j
il i -

LO. (3.3)

where

P
M2(t;)= -- "Uc2 (t)B*

.. f°c1 (t) + Uc4 (t) aU(1-c2(t)j

-011 6 (t )B*
• .-: - c ( t )B*

': (s.2 ) ; 2(t)+ac3 t+ ()] *

-;C7 (t)B*
7S

Finally the equations of motion can thus be written ass
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01

+ at M 3 (t-6) i(6)d6* -UB*Z(O)1 =( 0(.4)

or

i(t) =AZ(t)+Hu(t)44BZ(O)J '

00

00

+ 0

0

0

d()d
0(MS-Ma)~ M(t-6)Z()6(5

0 0 0 :0 1 0

*0 0 0 :0 0 1

r~~~j ..~(M -m )l(K -Ka) (M-dr BB)
a as a (s Ba)

28
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-~ F(Ms44ay1G 0 1M~~)~[

Since

and

00

A,74(t-v)(v)dv

We have

[ (+OJB*)Z(t)4. 0

0

K,,(t-v)Z )dv

0
0

*~~~~ S(swal(t)Zv)dv +Hu(t) (3.6)

where

29



"0"

S2 (t)= rU(o2(t)-I)B*

U
- c 6(t)B*

and

M 3 (o =) B

[14c l)cos c - (2+3c) 4~cjB*

Now we can rewrite (3.6) as

;i_. ii Zit =QZ(t) + It 2 (t-?l) ,(nl) d-n+- t - i')'.(rl) dn

;::;:+ Hult) ( 3.7)

where

Moreover straightforward calculation shows that

.2
K2(t) =0(t ) as t

St.1
Olt 2 as t 0

The function K3(.) is bounded and absolutely continuous

on the interval (0,..). Thus let K,(t)K 3 (t) - K3(m) and

30



carry out the dif'ferentiation in (3.7)9 we get

im=* ii+4(-)~xd u(t) (3.8)
10I

where

-2

0(t ) as t-

We shall henceforth work with (3.8).

Finally in this chapter, we calculate the matrices in

equation (3.8) by assuming the following section para-

meters:

W C=100 rad/sec a=-0. 4  x -0. 0125

W =o50 rad/sec c=0.6 r 2 =:0.00625

W =3 0 0  rad/sec x = 0.2 4 =0
hP

= 40 r2 = 0.25

We get

0

0

0

2243.62

-43.43

18977.03
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CHAPTER 4

STATE SPACE THEORY

From the previous chapter* it was noted that the
.J-.

Laplace transform of function 4(t) is not rational.

Hence our integro-differential equation does not admit to

a finite dimensional state space representation. A un-

iversal state space formulation is due to Balakrishnan

[10). A general infinite dimensional state space re-

presentation for our model is proposed. Then we show

that the solution exists, is unique and depends con-in

tinuously on the initial data. Moverover the controll-

ability and observability issues are also discussed.

STATE SPACE REPRESENTATION

The objective of this section is to develop a state

- space representation for the linear system described by

(3.8) using the techniques as indicated in [10).

Before a state space representation can be given for

(3.8), some operators shall be defined first.

Let H= R6 with the usual norms H2 =L-space of 6xl

functions f(.) on( 0,-.) with norm defined by

33
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2., , . J.J
. - -. .,.* .".. .. 2 .

.  
.." **.. ... - ,- . ..... - _- . .. . .-. "x -. " -

J,

'4

.

Ilfll llP f(t)ll P 6 d t where 5 P - 2

, . From now on we will use the symbol 1.11to denote any

,i one of several norms when it is clear from the context

which norm is intended.

Let H denote the product space HlxH 2. This will be

our state space. Let A2 denote the operator with domain

D(A2 ) in H2 defined by

. A2 f=g g(n)= (,n
4I

D(A2  fEH 2 If(.) is absolutely continuous and

And define operator B2. C2 as follows,

B2 , H 2  B2 ufsf6 =-

C2f = f(O) Domain of C2 ={heH2 Ih(.) is

continuous

After defining operators A2, B2 9 C20 it is claimed

that the following set of equations is a state space re-

presentation for (3.8).
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-, - 4 * , - - p

J (t)= Axl(t) ,CzXz(t) + Ru(t)

M2(t)=A2 x2 (t) * B2AX1 (t) + B2C2x2 (t) B2 Hu(t)

These can be rewritten in the forms

i(t)=Ax(t) + Bu(t)

zt) = Cx(t) (4.1)

- .w h e r e

.4...T

"- xlt) =[Xllt) x 2lt

A--"C 
2  BH a n d C = [I tO ]B2A ! A2B2C2I 2

To verify this claim, see [10J. The main result of this

section is

Theorem 4.1. The operator A defined by (4.1) generate a

C-semigroup on HIxH2 .

This theorem is an immediate consequence of the

technical Lemmas (4.1) - (4.4) given below. The proof of

Theorem 4.1 will be given after these lemmas. We will

, concentrate on the "degenerate" A (i.e.@ B2 = O) first.

Lemma 4.1. Given the "degenerate" operator

A=[A C]

,

35l 
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._5.

with As C2. and A2 as defined above, then A is a linear

operator with dense domain.

Proof. Straightforward.

Lemma 4.2. If x(. )eD(A2 ). then IIx(0) 1li2(llxI + uxittp )#

p p

Remarks This lemma remains valid for more general p.

Proof. First consider the restriction of x(.) on [0,l].

x(t)=x(o) x1(t) dt Vt [0,1]
+0

or

x(O)=x(t) -J1 x'(t) dt

Hence

IOx(o)llMlx(O~l + ix" x(t)11 dt

jjjx (,t)11 + 11x',1 tq t loo,11

-. ix(t)B + lix'lip

11: lxIO0I11P 2Pli xl(t) 11P + 1 x jI)

Integrate in to

36
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0 0

Hence

x(o)I P 2 P (j1XIjP + U1X P )
p p

" x(O )I -"  2 (IlxI + lx'II )
p ..--- p P

Q.E.D.

Lemma 4.3.

AjA ::]
is a closed linear operator on H.

Proof. Given that

!DL €D(A) R6=--A2

* [Xn] rx1  r
,x a A [x

" need to show that

xil Axx yl

1I: 3 E D(A) and xl""' 2 y2

37
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It is shown in Balakrishnan [12] that x ED(A) and A x

-y. We only need to show that Ax1 +. Cx Accord

ing to Lemma 4.2,

2cx -c 2 1 1 IX2(0) -x(0)1

11 Ix 2 X11 4 ,z,*2  x,- 1

n p n

. 0

by assumption and the result above. Hence Ax; 4 C2%
converge toi 1  2 n y1  1 2.

Q.E.D.

Now we are ready to show

Lemma 4.4&.

A A[ C]

generates a C0-semigroup, on HIR 6xL (0.e0)6 with -pc2.p

Remark. The linear operator

0 A]

is an infinitesimal generator of a contraction C0

semigroup. C2 is an unbounded@ unclosable operator by

IN itself. This lemma indicates that

38



0 A2

will generate a semigroup under the perturbation of Ct.

Proof. From Lemma 4.l., 4.3., A is linear closed and has

a dense domain. Moreover, it is easy to see that

IIR"- l )lI=n V x > i AI .

IIRkiA )1:i~ x > 0

set

,. R (X) R( xx)C2 R(XA 2 )

R1.g 2 )

then

"XI"A) 0L A 2 0_ C2] R

,.=IX [ [0 C]i

V -I0

* and for every x D(A),

R(XI-A)x=Rk xi -: 2 00 2X

*~11 r ]r C211X

39
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-. . . S .. t?

R I [ 21 C2:J
=R I - 2xx R)[- R x"..0 A 0

.... I R( MAX1"" = R(X;A))Cx-
0.-. 1 00

X0

Therefore the resolvent of

A C%

@ 0 A2

exists for X>RAII and it is given by the operator R.

Next, we contend that there exist some constants

M0 andw such that

IIR(N.A)nil M for Xw n=12....- ( k_ )n

For n=1I

o Rrvl 2 =IR(X$X)v 1 + R(X;X)C2R(A)v 211 2

v21 + IiRCXA 2)v211 2

"v"J li IIV 12

.. = RIi A)II 1 C2R( IA2 )

2"1 I I V '-
>2

.40

".' o.'%'' ." .4., • " ' 40 - . '.-. .,,,... . ,. . . ....• ' " " " ' ,. , , ,'," ,., ' ' , . , . ,- ,- . % .- ,%,,

,- , , -. . ",, .- - .. , - ; : . ,-.,, ;, , ,". , , , e ,. , .',,,% ..'s',",,, .,,, ',,"' ,..,



'..

Note here that

IIC2R(XsA 2 )v 2 U C2 J Xt v(t-) dt

OD 
t v2(t) 

dt

: =v" (f ,-Xqt d

( 1 q where p-a 2

pp1= and p i q_=l

Hence 2 2 2/q
. R v I 2 211Vll ... j-.... a

For -=p-2 we have the following extimatess

2

a) 2[R] O1

• .b) [ -l VX-IIII (aw- 1 for normal speed of

V aircraft).

So

41



R2 2 2_ _ 21v 2
= Li111 + 11211 xiiN)

i.e.

2
2 12

2IIRII__.- 11XI x ,- I ,A I

For nl=29

2 2

Iinv 11 71.1
=(x-nii) ( q,

(x-u ~i V2 11u~

v 
2

2-2

(X...': I l -'= * .- - 2+
(. ,- q -n_,,

'%='X.Proceeding inductively we find for general no

"4



v. 2 211 2 1 r2n

2(x-II )2n ( )2 n

S2 (n-l) ,2 J( -IIi 2n

Hence

V2 for LIAn , n=l12,...

It follows that A is the infinitesimal generator of

a. C-semigroup e(t); satisfyingIS(t)IgVie

Q.E.D.

Lemma 5. A C2  also generates a

A . 2 2+B 2C2J

'6 4 p -
semigroup on H R6 x LP(o. .) with p 2

Proofs First consider 0 0 v

IL B 2C2 RNA2  [ 2

= IIB2 C2 R( K ;A 2 )v2 11 - II 2 1B n v2 l
2 2 2)v21( xq) 11

Hence

-.. ~ B 11
- 1 provided 11 B211 (x q) or

4, 43
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Next set

iro

-0 0m k~j
O -0 B. r

=R(XiA) (1 -v jR(~oA)"

Iprovided 21 , B q 2

-We cend~.it that R i the resolvenit of

A C2

10 A2+B 2 C2J

(XI-Ai)R {I - [ C 2:] [ 0 R3

2F A2 1 1 2 2 J

o . "°.0 0

4 0 B .. 0 *

=R( ,,A 2 22



xiK C20Kx R~xliA2 XA 2)]

0XI-AA 0C R(XIA) Rd J

( 0 B1 2C2 R(X sA2)] 1 [0 B2C2R(X;A2)

0 -BcRks 1

( ]( 0[ B C A

10[ 1J( 2~ B 22 ( 2 )])

0

- [: 2C2 (XIA 2)] j 2 B2  (XIAZ)1

and for every x E ()
)A )XR C2][0 O ]I

R( -A~xRX A 2 O 2C

01 2 0 ~ ?

=~~ ~ A~; 0 B k{,~ C jx
2k2

S .. . -o 0* 0* - . . . . .. . . - * . . . - *

R(i X R(XtA* k * C])



) ( XA )k

,k= 0 B2 C2  )2 1 2

00 0 0~

= X + E R(x.A) x

;" - (XiA) [0 0+x
0a 0 B2C2 1

Therefore the resolvent of

[ A2 B2C2]

exists for

1IB21 iq

* ),,IIAII and x .- - 2'cq_.4

And it is given by the operator R.

Finally we have to show that there exist some constants

Mw- 0 and w such that

A' _,) n  for va w , n=,2,3,...

46
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A

Recall that in Lemma 4.4. 2 generates aC

semigroup S(t) on HI with 4 -p-c 2  and utS(t)II -*TeIxt

For n-i

R fi 2 fl/ 1 0~ 0 1(iA -1 FUl2

OXID ~R(D2 A2 1ir

0R(X;A0 2R(X A2)I 0 ]

21  2

2

Multiplying it outt we get

R(XaA)u14*R(XA)C 2R(,xsA,)(I-B 2C2RxsA 2)) u2  12

44

= 2URX;Au1
2.U(Xi~2R(aA)(IB 2 2R(gA)N



.1.

11uII u 1 2_+_2_2

2(1., ( ,,i.,) 2 B1Iq q 1 121

(q(qi 1q

2-.2 - u 2

q7l

X2 2B2 2

I/q

Note that

nB11x 2 11B 11 -1/q) 2(x- 2 o

~~~(q x) l/q) "{qy

- ( I 1 ) Recall that (2)/q.- for
-V-.. q 2q

X X-

1- I fI -I-

.'f. 11 B -3
(2 3

.: .= . ,. 1o11B 2 1 .

(i4 Y2 Ir2-

48
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1
3JiB 2II

S (1. iIB2 "i )2

3iIB 2 -4 2

where

~3 lIB 211 1
-, -1

4 2

Hence

'U . II uAI 22
u l 2  - i )2 1, u 11 2 + 2 2-t ,t)

5, Lk~j ll

i.e.

, r- IIB 21q

IIRIIxiall V XsAII and X q

or

IIRI=I V >. ".A,,+ -2
II2 211 l q  q

q0

For n= 2,
0.

U2 [ R (xA2)[I-B2 C2 R(AiA 2 )j

49
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66

where

au R~x8A)C 2 R(XiA2 )('(IB 2C2R A2 ))9)2

Hence

R Ui 2l jj[1(XiA)ul 4- Au, 1 2
2 j R2(xA2{I-B2c2R(A 2 ) 2

2  I
2 [IIR2(?t;X)ul,2 I'4.11u 2 12+IR 2XiA)I-B C

R(xoA 2)]-
2U2  2

01u211 2 21
2~ ~~1 IIB Tr Iii

F~~ 2juj2 21 2 1

(q(qx)l/q

K1U 1
+ --. 50-

11 2 1



-. 7,-

0"

+ lIU 2112
4~ l II14

2

2 24

- (lJAJL•

E n fl 1i flu_

4 q

.o-

B - i q

4 4]

(,_NAP: 1q .ll/

:.' nn.
- Xlq +

(q)(1q .lq B 2- xn4

Proceedi~ iAuciNl ane fin foqeerln

"-(AO)2=u -  n q2 2

K2L 51e x RAN + q

-. :-.Proceeding inductively we find for general nt

I,#51
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uR l 2 2Mu1- 2  + u2
P2

22n

[+.~~~I " (xq/q.iB211 12n

Hence

1p2 ____ _+ n =1@B2 2I

q n 

q

It follows that A C is the infinitesimal

generator of a Co-semigroup. I

We are now able to prove our main theorem.

Proof of Theorem 4.1.

From previous lemmas, we have shown that

rA C2  s an infinitesimal generator of a C0-

0 A0+B0C]j * 3 q

semigroup T(t), satisfying UT(t)ll Ir- e

Observe that 0 0 is a bounded linear operator on

the reflexive Banach space H hence [A C I s
ik "i B2 ,A2*B2C

the inifinitesimal generator of a Co-semigroup S(t) on He

- l I ,ll iw e 
,
i , . ,.. - *' . ,- . A



. aifyn .i~tI .. ~{U N .-- . ... . . . . . .

see Pazy (11] Q.E.D.
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CHAPTER5

ACTIVE CONTROL OF FLUTTER PROBLEM

INTRODUCTION

The vital role of flutter control problem is played

by the choice of aerodynamic model. Most of the studies

up to now were conducted by approximating the aerodynamic

modelling with rational transfer functions. As a resulto

5-.

.5 the final model obtained is described by linear, constant-

* coefficient, ordinary differential equations. The major

problems with those approaches are as follows:

'5-. (i) The singularity .iear origin of the aerodynamic model

will not be seen after rational approximation. This im-

4.. plies that the arbitrary transient response predicted

: .will be less acurate.

(ii) The control law obtained via finite dimensional

approximations is not put back into the original system.

.' yHence the control may not be able to stabilize the

original system even though it stabilized the approximat-

ing system. This can be seen from the following example.

AN EXAMPLE

Consider the following one-dimensional version of

equation (3.8)t

5,5

5-'"polm it hs prahe r sflos

'.-S

'.'"wilb escute

9-
..."(l h oto a bandvafnt iesoa

x-'apoiain sntptbc noteoiia ytm



z(t)= z(t) (t-e)z(e)de u(t) (5.1)

where (t) in our aeroelastic system is of O(t ) for

small t. Recall that the rational approximation of

Kussner function is (t) =l-0.500e-O.130t 0.500e -t in

engineering literature.

di(t) =O.065e-0 .130t e et
"d- 2

For this one dimensional example, we are going to ill-

ustrate that if we take Z(t) -e-t as our corresponding

rational approximation, then the feedback control law

derived from approximate model will not be able to stab-

ilize the original system.

First we rewrite the equation (5.1) as follows,

i(t)=z(t) + w(t) • u(t) (5.2)

where

• w(t)= e-(t-e)i(e)de (5.3)

Differentiating (5.3),

(t)= ;(t) - W(t)

= z(t) . w(t) + u(t) - w(t)

= z(t) ,. u(t)

550:'
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..... - - '-.. . . - , - . * - - - , . - .- - . .  -  . t

Hence (5.1) can be written ass

i(t)=Ax(t) + Bu(t)-.- (5 .4 )
z(t)= Cx(t)

where

x(t)= [w(t)

A4 ]

SC = 1 0

It is easy to check that the matrix A has one stable

eigenvalue

1 2

and one unstable eigenvalue

- 2

Moreover the system (5.4) is controllable and observable,

*it is well known that we can find a feedback control

*' u(t)=-kx(t) such that the system will be stabilized, if

we take

56



u(t)=-[l 1  z -llz(t)- .2w(t)o [2 Lw(t)J
* .p.]

then

BBP[~ ]1l .211101 : ]
A- BB*P= [

[::1 .22]
-.1 -,2

det(A-BB P)= (K+0.1)(X.2) * .08

i, 2 .~ . -. 2.o-.
X2 + 3 X+ 1 3 2=

This matrix has two stable eigenvaluess hence the feed-

.p back system is stable for an approximating model.

Now let's consider the original system (5.1) with

• :: (t)= zMt (t-e)i(e)de+ ult)

=z(t) + (t-e)i(o)do - 1.lz(t) - 0.2w(t)

... .5?



- -. ls(t) +. 0.8 J o(t-o)i(s) do

Take Laplace transform of equation (5.5).

sz(s)= -°.lz(s)0.8sz(z)-s(0)°) s e + z(0)... ~ Ko +uK()

Z(s) zo(0) z)o)/s)
~~~(e ,o.1 )(Ko (-!) Z (-))-0.8Ue'r8

In order to examine the transient behavior of the

system, we take the asymptotic expansions for large

arguments a of the Modified Bessel functions KO(B) and

K1 (-).

T o r 1 ase + where t ake

U

Hence. K (!l)+K 1(:) 2 e for large a.

The denominator of the transfer function H(s) now takes

the following forms

.(s+.) - 0.8U

58
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Hence

27Us 0.1) - 0.8U=0 implies that
5

)- o.u =o

Let y -jtj, then

? . y= 0.8u, .64u2-0. 12 u --2-
- 0.8U* 2 22'U)Z>0 for flutter speed

0.64U2+0.64U 2 "0.i4(2U)*l.6U-O.64U2 (0.4)2rU ,

The original feedback system is clearly unstable. This

example illustrates that the feedback control can stabi-

lize the approximate system but not the original system.

INPUT-OUTPUT STABILITY

In order to stabilize the original system, we will

work with the following problems

* Given that

"(t)=Ax(t) ( Bu6t)
,-:- 15.6)

* Z(t)= Cx(t)

where

59



A=[ :C 2 *A2] 2 n -i 0

with

JifuJ=f llx31(t) 1JP dt + ut)Pd

we want to find a feedback control such that the cost

functional will be finite. Note that the Xi(t is only

the finite dimensional portion of the state space.

We need the following technical lemma in the proof

of main theorem 5.1..

Lemma 5.1. (Paley-Wiener) Let A be a matrix with

entries consisting of positively supported delta distri-

butions and L1-functions, then it is regular if and only

if its Laplace transform satisfying the following con-

* ditions

in SE det L(A)J >0 ,where C +jstRes a0~

Proofs See Hille-Phillips [17].

* Theorem 5.1. Given that (1,Ri) is controllable, then
there exists a feedback control u(t) such that Jru]<o

Proofsa From chapter 3v it is clear that (Aini con-

60
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trollable, then the finite dimensional Ricatti equation

W*P,+X+I- M*=0 has a nonnegative definite, self-
A-

adjoint Pit such that A-HH*P1 is stable if u(t)= -ff*Pl
x,(t).

* In order to show that J~uJ is finite@ we need the

resolvent for A C 2 1 frt

B, , 
t2A is

r -,

Ralll th the enite for C isq

Defin1e R(I) R(I= 0 h a nd ne

R1 2.~~ R(,) 2 G 2) - 2 2  2 )-

Rs e .R( ;A ) -B2C2R(AA)Vl

Th" ena=AJwll have the resolvent 2 i

.-

61 for s>[rKl

. Define R1,la RlAA)

.:..R120 = R(;Lx)C2R(xtA2 ) IB2C2R(;LtA2 ) 1-

I .° :i-'!R22==R( 2A2) Iz (2 ) -2

-''Then A= A C2  will have the resolvent

B2 B2C2+A2

E~~~~~ ~~ "2 2- ': ."..-,, '.'./ :"r'; '"i"" "-" -+"'"'."'-''...J ... .. .: ; ;: '' .' '; ;

• - - + ' .+ , + + .> • , + • + + , : : ; + + .6 1: _



R R Rl for )LA>IIB 2 111IqIIq.UX q121k-O B2 1 0

A 0

- LIB

-. R11-R1 2( I-B;ZR 1 2 ) 2 AR11  R12 C I-B 2)t R1 2 )

1R22 ( I-B2XR12 Y1 11 Rl(IB2AR 2 )-B J
-. Now# let us consider the following feedbacks

-~u(t)= -kx(t)= t[oiP1 (0] [-=H1Px1 t
r"*, I[x 2(t)Ji,

then

C2 1
A-Bk J ~ -H.p ]

=[1 :C2 t] - [B*P 1  0J

Define Mm C:]'*i te
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A-Bk BC2 A] an~d i(t) n(A-Bk)x(t)

Note that Bk is only a bounded perturbation of At hence
A-Bk also generates a semigroup. In order to show that

Jnx 1 (t)IP +. fIu(t)Pdt~0  we will examine the

behavior of R(XoA) iC(O) instead.[:2( ]
where

R1 , Rx;M"

Substituting R12 into the x1(A.) equation, we get

x, " 3. RI I C R( t iA d 1 B 2 )( ki 2

B2NR11]x1 (0)
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+lRl1 R1 lC2 RX1A 2 ) )IB 2 C2 R(X;A2 )-Bj'1R 1 2+B2iR 1 2 2 C2

R(X;A) .B X x(O)

=[Rll+R 11C2Rn-sA 2) )I-B2C2RP,4A2 )-B94R12 (I-32C2

*R(A;A2 ) 1tB2 MRll lxl (0)

4R11.*R11C2R(MA2) (I.B32 +B2 M".11 )C2 R(k oA2)

+ ((B + .23R)C 2 R(XIA2 ))2  2M)sRl.1xicO)

a[*+l(BM1+B B2 )BeM1 +

- 11 x(O)tR1 1 I( 2 ,AMR1)}l Rnx1 (0)

Since ~'Is stable. the invers. Laplace. transform of

R11x1 (0) will be in L[0.&). moreover the inverse

Laplace transform of i_(B +B,,mR 1 ) consists of only

positively supported delta distributions and L,-functionag

hence it is regular if and only if the determinant of

+AB4B2 R 1  is bounded away from 0 on C4.by the pre-
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vious lemma. Since M is stable, then B24.B KRii is

bounded away from identity for our aeroelastic system and

the determinant condition is clearly satisfied. The

second term in (*) is again in L6[0,w). This shows that

J[u] is indeed finite.

LINEAR OPTIMAL CONTROL THEORY

In recent years, a large amount of literature has

been devoted to the L-Q-A problem for infinite dimension-

al Hilbert space. See, for example [13, 14,.15]. In

chapter 4, we have shown that the infinitesimal generator

A generates a C0-semigroup in a reflexive Banach space.

The reason for that is because of the aerodynamic energy

consideration, i.e., the behavior of Z(t) near origin is..

of 0(t ). If we approximate the function Z(t) near

origin by t - I /2 * , then the proof for Banach space will

go through for Hilbert space R6 x L60,6). As a first

step, we shall in this section work with the state space

6 6
*R x L2 10,00).

First we recall the concepts of stability. Let T(t)

denote a strongly continuous semigroup over a Banach

space H. If H is finite dimensional then Re(a(A))< 0 is

equivalent to 1IT(t)I 0 or for every x in H llT(t)xll - 0

as t-.
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The situation is quite different in the infinite

dimensional case. We will giv'e a few different notions

of stability.

Definition 5.1. A semigroup T(t) is "exponentiallyII:
stable" if IIJT(t)I - oas t -

Definition 5.2. A semigroup T(t) is "strongly stable"

if 11T(t)xlI -.0 as t - o for every x in H.

Definition 5.3. A semigroup T(t) is "weakly stable" if

* [T(t)x,y] - 0 as t - cofor every x, y in H.

It is easy to show that exponential stability im-

plies strong stability, and strong stability implies weak

stability. Note also that T(t) is weakly stable, so is

T*(t). But this is not true for strong stability. just

take the left shift semigroup for example. However in

finite dimensional cases, these notions are equivalent.

Using rational approximation, J.W. Edwards[l] applied the

finite dimensional L-Q-R theoty to the flutter problem.

However, this problem can not be solved without using

the infinite dimensional state space setting as the

reason is clear by now.

:.
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For our aeroelastic systems, the generator A will have

unstable eigenvalues when the speed of aircraft is fast

enough.
4.,

We will consider first the following L-Q-R problem.

I :Ax(t) + Bu(t)

z (t) : Cx (t) (5.6)

where

A A C2  defined on FR6 x L 6  o.)

5?:0 A2

The cost functional is

:;'.:: J~u] = l(t), Xl(t) + u(td
. -0

where R= 1 0 A>0, which, for convenience hereafter

0 L

will be taken to be unity. Or we can write J~u] as
.%D

. ([Xl(t), xl(t)] J u2(t)dt

Before stating our main theorms for this section.

we shall recall some results of L-Q-R theory in Hilbert

spaces ( see Balartishnan [12], Gibsontl5]).
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Theorem 5.2 Let A. B and R be defined as in (5.6). with

A the infinitesimal generator of a strongly continuous

semigroup. Then there exists a nonnegative, self-adjoint

solution of the steady state Ricatti equation if and only

if, for each xcH, there is a control for the initial time

s and initial state x that J[u]< w . If PD(s) is such a

solution, then <P.(s)x.x>H=min J,(sxu). The optimal

control u(.) is given by u(t)=-B*Px(t) and x(t)=T(t)

.x(O), where T(t) is the strongly continuous semigroup

generated by A = A-BB*P...

Proof We follow the same notation as in Gibson[14].

First we consider a sequence itni where tn-- as n--,

and try to investigate the finite time L-Q-R problem for

which tf stn . For each of these problems, we denote the
solution of the Ricatti integral equations by Pn(.) and

the cost functional by Jn (sx.). An important observ-

ation, which follows from the fact that min Jn(sxu)

= <Pn(s)x. x> eH is that

Pn(t ) 's Pm(t )  t0- t - tn S tm

Let x and y be in H, we have

2
' .<Pn(t) xv Y>H <p 'sx xH'<ns Y>H

Thus

.6

'I. 68



Jn(s~x,un) nPn(s)xp x>-.J(sextu) implies that

su <P~sx ~H~ for each pair x and y in H.

n

Then sup 11 P (s 11t-c a by uniform boundedness principle.
n

Let t Ibe an increasing subsequence of It I. Then the

uniform boundedness of UlP k(s)II and (*) imply the exist-

ence of a unique self-adjoint operator P0,(e),E L(H*H)

[,.. .

such that Pk(s)x - P.(s)x strongly in He xe H. Now we
40 have shown that this is true for a subsequence. For the

original sequence to hold, just use the generalized

Schwarz inequality. Q.E.D.

Theorem 5.3. Suppose there exists a control u(.). such

that for each x pH the cost functional Jxuj is finite.

and lim flx(t)1=0; i.e.. any control drives the state to

zero asymptotically. Then there exists at most one uni-

formly bounded, nonnegative solution of the integral

* Ricatti equation on [0...).

Proofs Let P(.) be such a solution and define x(t) and

u(t) as followss

4.0x(t)=S(t~s)x and u(t)u -B*(t)P(t)x(t)

Then lim1x(t)110 and the uniform boundedness of WO N

imply lim P(t)x(t) x x(t)> 0. Then

'.

69



< cP(s)x, x >H J (,x eu)

Let v be an admissible control for s and x. then after

some tedious calculations (see Gibson [15)), we can show

that

Thus u is the optimal control for Is and xv and P(s)

Q.E.D.

Theorem 5.4. If f is in L1[O..o)p g is L,[O~o) then

h =f*g exists and h is in L2 eO.o).

Proof. See Dunford and Schwarz (16].

Now we can state a theorem for the system (.)

Theorem 5.5. If (U.) is controllable and (AR) is

approximately controllable, then the steady state Ricatti

- equation [AxePyW4.(pxoAy],+ xoyj -B*PxB*PyJ. -'0, Vx~y.D(A)

has a unique nonnegative seif-adjoint solution P1.

and the optimal feedback control is given by

* u(t)= ..*Px(t)

Proof. It is a standard result from the finite dimen-

sional control theory that if (XORI is controllable, then

the finite dimensional Ricatti equation .*1 + P1IX *I

q~70



-HH*P 0 has a nonnegative, self-adjoint P1. such that

A- H*P 1 is stable if u= -H*Pxl. This implies that
1 1

o

xl(t)= *(A_ .*Pl)tXl(O) te (X P1) (tS)x2 (s)as

x2 (t)= T(t)xo

where T(t) is a left-shift semigroup.

Since (A-KiI*PI) is stable and x0 is an L2-function,

it follows from theorem 5.4. that

f_- xI(t)I2 dt + u M dt s

Moreover, if (A*,R) is approximately controllable, then

x(t) will be weakly stable (see Balakrishnan [13]). But

x2(t) is strongly stable by the fact that T(t) is a left-

S shift semigroup, even though x1 (t) is only weakly stable.

Yet in finite dimensional space, it is the same as strong

stability. Hence Ii x(t)II 0 strongly.

Now by theorems 5.2. and 5.3., the infinite dimen-

sional steady state Ricatti equation has a unique non-

negatives, self-adjoint solution and that there exists an

optimal feedback control such that u(t)z -B*Tx(t) where

P, is the nonnegative unique solution of the SSRE.

Q.E.D.
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Next, we consider the same L-Q-R problem for

[ "l
° -.. (t)=Ax(t) + Bu(t)

z(ti = Cx(t)

where

A=[ C2C B H and C=[I 0]
B2A B2C2 A2 B2H as before

The same cost functional

02

J u= fxl(t), x,(t)] dt + J u2(t)dt
Under the same assumptions as before, we can only

prove up to weak stabilizability, but we are only in-

terested in the finite dimensional portions anyway. So

the finite dimensional part of the system will be stabil-

ized as before.
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CHAPTER 6

SUMMARY, CONCLUSIONS. AND SUGGESTIONS

FOR FUTURE RESEARCH

Aerodynamic flutter refers to a subject that has

developed from the earliest days of manned flight. It is

an unstable motion due to the interaction between struct-

ural vibrations and the aerodynamic forces which results

in the extraction of energy from the air.

The vital role of flutter control problem is played

by the choice of aerodynamic model. The design of act-

ive aeroelastic control is greatly aided by the avail-

ability of providing a mathematical model valid for

-* arbitrary motions. In the past, engineers used inverse

Fourier transform to obtain impulse response function

airloads for use in convolution integral solutions of the

equations of motion. More common are calculations using

finite state, rational function approximations for the

unsteady aerodynamic airloads.

In this research, we developed a time-domain model

for unsteady aerodynamics. Hence the exact transient

,,.'.

* response of a three degree-of-freedom airfoil can be

- -. obtained.

Then we apply the unsteady aerodynamic models to

V.

O-3

-.. *.' j~
I "." " "



elastic vehicles. As a first step, we treat the air-

- oil as a three degree-of-freedom two-dimensional typical

-. sections. The upshot is that the coupled aero-structural

*j dynamics will give rise to an integro-differential

equation.

Instead of using rational function approximations,

we contend that the problem could not be solved without

introducing infinite dimensional state space. We showed

then the solution exist, is unique and depends continue

ously on the initial data via semigroup approach.

The principal advantage of using a semigroup form-

ulation is that once a system has been shown to generate

a semigroup, the problem is well-posed immediately. All

that is left is the smoothness of the solution. This of

course depends on the smooth properties placed on the

initial condition and forcing term.

S- Most of the studies on flutter suppressions are

* based on finite dimensional L-Q-R theory. The major

S.problem with those approaches is that the control law may

not be able to stabilize the original system even though

* it stabilized the approximating system. Hence we are

forced to deal with the complex original system.

First, we oonsLder the input-output stability

74
.._

'=>' ",""# " & ,, " -, ,, ." " Y./' ) ,- =,, "% % '1'""", , -" . "•" "



problem in the reflexive Banach space framework, then we

modify the function Q(t) near origin such that 4(t) will

be in L2 0O). Then we use the machinary of L-Q-R

theory in Hilbert space to obtain the optimal feedback

control law by solving algebraic Ricatti equations in

Hilbert space.

Obviously this research needs to be continued in

various directions. One extension would be replacing in-

compressible case to compressible case of the aerodyna-

mics. Another extension can be the replacement of lumped

structural dynamic model by distributed parameter system.

Finally, we can see that all the control theories in

Hilbert space or Banach space so far do not quite fit our

needs for aeroelastic systems. Hence one of the most

, urgent extensions would be in the control theoretic

aspects.

75
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APPENDIX A

CALCULATION OF THE LIFT

We have in chapter 2 (see Balakrishnan, A.V. and

Edwards, J.W. I)

P= JP(xt)dx

=(P4UYa(teX ,tlx)dx*LJ (toy)dy dxj

..-)Ur(t)-L- XYa (tox)dx 4

Consider

Wlya ~r t~ ~,x)dx x
-. X F K4 dK-K

r (tT) T*

N.r-
8T- W J

rot-r4'.~ +T

'Now

rt (t IA) d~m I =-"c- r-* (-he. (t-NA 1%i x-PN*



- (-a)~it Ual (t)difv~+

f X-4

-*vh'(t) -(air-w-ix)a"(t) f Uwae(t) *(cos- c

*(x-c)(cos'1c 1+xLog ~)"t

-1 * 1*XL 11+ Up' (t) (Cos c Log-x

where

Log J.1=log I +4 -)1x %rkl+,i(1-,x)I

~Log 1. 1 = -*

and where we note that

x(1*X\/I dxu. 0;
0;-- x log 5.IdxaM c 1-c;

x (X-C) o10 dx Tr (1C 2/J x(x-c)

JxV4 l _xdx~
.5+1 1+

Hence
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T -7rh (air)a(t) -wa Ur'(t) *(c COB-l1_J,_C

* ( f~')"( + U(C 1_02 cos-lc)PI(t)

N~ext

'n ~ x H (Y~x)dx rg(t-N)dY

Hence

P =(-P) Ur(t) + uwav (t) - u(cV7 o&c,-'t

*wh"(t) - awa"(t) - (flc2T)3 0 ccos-ic

f FiP" (t) !- jf (t-6)(Bqi(6)jd6

where

3 (t)=J ci(t-6)(u6 U26 427U6)d6
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APPENDIX( B

CALCULATION OF THE PITCHING MOMENT Ma

We haves

ma (-P) ( (x-a)UYa(t,x)dX+F1' J(x-a) JxYa(ty)dy)

s(P) (JU(xa)-y (t~x)dx-Tt- Jlxy) Y(tsx)dx

*rt)(1-a) 2

-~ J (x-a)Ya(tix)dx-n-ar(t) o 3 Y x(tex)d~x

X' x~(tx)dx 2 1 -- x (1F 2  (txt)

- hS 0H(etx)r'(t-e)de dx

* -~ ~JI~.ix dx5'P~ d'1 J((t*uv)

-4 uT1 2 u 1)r' (t-?I)di

T (r (t) r r(o))l c(t- u) [B. (u)J du

10 

.

ii 8l



Tim 1X. -1 *~ (t)-(-n-a)&" (t)

1x

= -Tc(t) dT Ujt)ta't U-o~ i-

Cosn -~c) P, Mc 2 PM JL

2 )C71=(xxa)2w(h(t) U~'t)) w(a--x)t

* (co c + log 1.1-)(C p'(t) , (o& 1

V.x

28

vato.d



* ~ ~-.7.77

0.

1 -x

1 1a2 1 rh()Ut()- wlaa 3a!2 )e '1~

aa2 )co 1c 1 2 2c% Il, 1
+a~a Cos ( + 92a + 5-ac) .j-ofeso M pcos1c

Hence

yMa (-P){I-aUr(t) eujr(t) -~~ + u 0 c3 (t-1)

[B,i~tn)jdri + Ul-Ph'(t) - Ua(t)w *waz'(t)

+ U (-Cos- c+C '1 2 )0(t) +. (c Cos-l-1(2+c2)/FY7 C

(t)t 1+ r'l(t) -(
1Z*a *a)ff)h"(t)+UW'(t))

r w(laa 3 a)2 Ot) M UI(1.a~a2 ) cos-1c + 2i+ (1 2a

+2c2 _2ac 11 -, 2 (I2
3 2c1cBt r2co (-1-a c-ac)

_/12 1 a 2 2 1 2 1 2 C3 + rr 2 --- ~S()
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: tz -) 2%, [ i
Tz -

* 1)

:4-1

where the facor in square brackets in the integrand in

rhe last term is

11

1 2 " -x

- (x-a)2- H(xT x)dx
20 l+x

-°

2

".'. .Z-1

':It is also possible to split the circulatory and non-

circulatory terms in yet another way. Thus by not splitt-

- ."ing

-1(x-a) a (t~x)dx- -ar(t) + j_ Xya(tox)dx

'"but directly calculating the left side, we haves

-1

,' '.-. ]~(-)Y (tgx (x-a (4 ) T -(

a 3
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+ U(cos -c +JEi log I )(t t(cos-lc + .
1. 1C2x

+ (cos'-1C +J logI., )(X-C)109(t) )dx

--(l.2a)ffUa(t) - (.2a)wh'(t) + 2a~ta(t) * (-

-~-2a) cos-1c + (c-2a) f1-c2)p(t) + l(cos-Ic + fi7-

-(-1-2a) + 2cos-c (a~ 4 4) + I~lca)
2 222 3 +a~

T4in 2ffJ Z z/i a/ a r (t-e)d e.

This yieldss

M a = (-p){ U2(-l-2a)wa(t) + U2 1(-l-2a)cos-1c

+(c-2a) 11-C2 10(t) -U(l+2a)vrhl(t) +. 2Ua2iral(t)

+ 13. 1c2 (1-c2 3ac) *2cosl1c(ac.l-+4) -(1+2a)

(cos ic 4 * c)l t +~a2 *a)EjI'(t)

- * 22& _ F
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(I~a2a~wh(t) (l Ia3 _#-)D" (t) f(cos-i

+ !1.c2) (LIa 2*a) + lc 4c26 cc-aC

2 21-)

-(co&-
1c )(a.-a.+.-a 2c~ae))p"(t) + 2r'(t)

*U ((Z- fz-y4laf =+'a)r(t-O)de 1d i

o -1-tjo

T-M-z + - +a~z fz71)-a _ 1)re(t-e~lde
z -1 Z -1

fl Jjpt)- U(1+2a)wh'(t) + * a2--~ t

U U{(+~3ac-2a-2a---) IT2 + (2ac~cj-2a-a)

2-a cosacP'(t c +.~

2 1 2 a 2c c l
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a t ,(- /1):(- p)d* j/Z z ~'l. az'li

The last two lines may be written as

+ c4uP[.~)d P UaJ(I-c (t-P))

2 c4 (t-P) a.l-Z(p)]))(d.10)J2

* *B .(4d ) !- *c(- 2 (t-BZP)]d + lc5 (t )

- *(B. (J p~f . ( ) d

05 f Oc3UP t dP)BZP]d

-S2

2 
',Z.,j

tl-S-)+U4(-) +alc(t p)[,()d

.10

, *2
d tI.5

at- r V(t-P87

0 3ta 0(-~



C c2(t) +. c 3(t)

S.t

N-tw CItP((-P U -~72p(_p2d

-N0

N..



APPENDIX C

CALCULATION OF THE FLAP MOMENTK

We have:

V, A a(x-c)P(x.t)dx

=(-P) IIIU(x-c)'a (tx)dx*a J(x-c)d4 Y (tpY)dy

-)~ By ~ ~ (t, y)dy

a ~~~ 2 y(t.x)dx~

P) VjU Jcxci~a- 2

a fJ(x~c)2ya(tex)dx~

* Now

ddu
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The first term is equal to

vh't M W(a-I-x) ~(t) + Uvart)

Next let

l-x dxfliI 6 dIF,(c)

o l4x 0o 1-6

Now let us define

Hl(T)W 2W (x-c)i=-xH(.x)dx

1* li

(-jaL+ coo ~ (-coo

Z-1
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WW. :.. - N7~*** 44~., x

Hence

= I (x cfx(h(t)w(x)a(t)afaO(t)

-2h'taa()(t) t) )(c~(1.e) !1(t)-(c)cos()

t~
, (c)P TO (-q d
oJ

Next

I' (x-c)%Y(tpx)dx

le2 J(x-C)~i + x1dcEt (g2(o)-0g1 (0))o

91 .~.* ? *



I %

.()-U91(C)) s2o,(-d

where

-414

g2(c1x 14 X-0 =1xd _+n d

First term is equal to

2h1(c(h'(t) - aa'(t) *Ucz(t)).

Second term is equal to

2h 2 ( c) ( t).

N$ext

2(-2)~ 1 x =

(-2) £L-2L1..2xhz dx
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'C-1

z2 -1

-. 4~(z-Zc)(Cos~c 1 4 1~-Cos cC I72

2 1 r(-j.1221 2-z02_1
(-4)(z-c)tanf !1)'12 Z1zZ-zc ~

-1 7
-. Cos c * (1+2c-7-z) r

Hence putting it altogether we haves

U((2+c) !1-c2-(2c,1)cosl1c)(h (t)-az' (t)+

+ Um(t))

2 C cos-1c MOM)

-U(F (c)-cF1 (c))OB'(t)-U P1(o)S(t)

-t-0

U t CH, r(t- )dA k rLY (t) h()(hm (t)

I0

g* )cglc)
-a~t+UI(t)-2()*()+ _)OWt)

*0 H2 (0 r(t- u),u

93



- U 1(*~ - (clcsl ~)u2lCst
- '~'2

Cj8 2 ______

U ft 11udul3 d It
- 1 0 H.1~u/A -~/~2 2-1r dt TD 0 Hu)r(t-u)dut

2d

21#2c*2o2 )Co 1c - 2C.*4fl2

h.,C~n1 cosx - (l)4xc) 1o2
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APPENDIX D

EQUATIONS OF MOTION

The equations of motion of typical section show in

fig. 2.1 are derived from Lagrange's equations (see

Edwards, J.W. (a3 )

d a .. (-'

where the Kinetic energy is

T- _1 2 p(x) dx

The airfoil deflection is

Za -h-(x-a)d - (x-c)OU(x-c)

The potential energy V is

OThus

--.T= m .1 + ,I+2+ S S h + (c-a) c

Substituting T and V into the Lagrange's equation, we get

the equations of motions
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, h or ,0

S h + {I+Sp (c-a)) Od I + kpM

Let

h P

X= 01L= 10

" Then the equations above can be written ass

,T'.,.Ms + Bs + KsX= L
"-.- m

where

Msj xd r 2  
4 *X(c-a)

.xI x r, 2+x8 (c-a) r, 2

2
,,h 0 0

' ";- 2 210 0 rp

0 0 0

I. ~96
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